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Abstract

The joint distribution of electron density and its gradient
in a protein electron-density map was examined. This
joint distribution was represented by a two-dimensional
histogram (2D histogram) of electron-density values and
the modulus of the gradient. 16 structures representing
distinct protein-fold families were selected to study the
dependence of the 2D histogram on resolution, overall
temperature factor, structural conformation and phase
error. The similarity between the histograms for a pair of
structures was measured by correlation coef®cient, and
the residual provided a measure of the difference. The
2D histogram was found to vary with resolution and
overall temperature factor, but was found to be
insensitive to structure conformation. The average
correlation coef®cient between pairs of 2D histograms
at three different resolutions examined was 0.90 with a
standard deviation of 0.04. The average residual for the
same condition was 0.13 with a standard deviation of
0.03. The 2D histogram was also found to be sensitive to
phase error. The average correlation coef®cient and
residual between 2D histograms with 10� phase
difference are 0.71 and 0.18, respectively. The variation
of the 2D histogram resulting from structure-conforma-
tion changes was estimated to be equivalent to that of a
4� phase error. This establishes the minimal phase error
that a 2D histogram-matching method could achieve.
The conservation of the 2D histogram with respect to
structure conformation enables the prediction of the
ideal 2D histogram for unknown structures. The
sensitivity of the 2D histogram to phase error suggests
that it could be used as a target for the density-
modi®cation method and also could be used as a ®gure
of merit for phase selection in ab initio phasing.

1. Introduction

1.1. Constraints on the electron density offer a means of
phase retrieval

The crystallographic phase problem is indeterminate
given only the structure-factor amplitudes. It is only
through knowledge of the chemical or physical proper-

ties of the electron density that the phases can be
retrieved. Characteristic features of the correct electron
density can often be expressed as mathematical
constraints on the density function and thereby on the
structure-factor phases. In favorable cases, these
constraints are suf®cient to determine the phases
directly, which gives rise to direct methods.

Direct methods for small molecules rely upon the
availability of X-ray diffraction data at atomic resolution
(Hauptman, 1986; Karle, 1986). It exploits the fact that
the electrons scatter the X-rays so that electron density
values cannot be negative (positivity). There are discrete
atomic peaks at atomic resolution, therefore the density
around the peak should assume the shape of an atom
(atomicity). However, protein crystals rarely diffract to
atomic resolution owing to the special properties of
proteins such as the ¯exibility of the peptide chain and
the large solvent content. Consequently, the positivity
and atomicity constraints are no longer strictly valid for
proteins. Methods that might solve the protein phase
problem must be able to deal with non-atomic resolution
diffraction. Thus, constraints that are valid at non-
atomic resolution are crucial to the success of any
methods for protein phasing.

1.2. Some constraints exploited for protein phase
improvement

For the majority of protein crystals with non-atomic
resolution diffraction, the available constraints at our
disposal are not suf®cient to enable a unique solution to
the protein phase problem (Baker, Krukowski et al.,
1993). Most current methods are aimed at improving the
initial phases and extending them to the full resolution
of the diffraction data.

The special features of protein crystals, such as low-
resolution diffraction pattern, large unit-cell size, large
variation of thermal motion and high solvent content,
constitute the major challenges faced in protein phasing.
However, these unique features have also been
exploited in various methods for phase re®nement and
extension. For example, solvent ¯attening exploits the
fact that the solvent region of the electron density is ¯at
at medium resolution due to high thermal motion of the
atoms and disorder of the solvent (Wang, 1985). Histo-
gram matching utilizes the structural independence of
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the electron-density distribution to improve the phases
by bringing the distribution of electron-density values of
a given map to that of an ideal map (Zhang & Main,
1990a). Sayre's equation is used to restrain the local
shape of the electron density (Sayre, 1952). Molecular
averaging forces the electron density at equivalent
positions to be equal when there are multiple copies of
the same molecule in the asymmetric unit (Bricogne,
1976). Electron-density skeletonization imposes main-
chain connectivity in the electron density which is
characteristic of protein molecules (Baker, Bystroff et al.
1993; Bystroff et al., 1993; Wilson & Agard, 1993).

The combination of all available constraints yields a
larger constraint space and reduces the ambiguity of
phase values, since each constraint represents different
characteristic features in the electron density. The
constraints from Sayre's equation, solvent ¯attening,
histogram matching, molecular averaging and map
connectivity were combined for phase re®nement and
extension in the SQUASH method (Zhang, 1993; Zhang
et al., 1997; Zhang & Main, 1990b). It was shown that
there was synergism between these constraints, and that
the simultaneous application of the constraints yielded
the most powerful method for phase improvement.

1.3. More constraints are needed to solve the protein
phase problem

The effectiveness of a phase-improvement method
relies on the phasing power of the constraints and the
number of independent constraints used (Arnold &
Rossmann, 1986). The phasing power of a constraint
depends on the number of density points affected and
the magnitude of the changes imposed on the electron
density. It also depends on the physical nature and
accuracy of the constraint and how rigorously the
constraint is applied. The re®nement and extension
could be initiated from a lower resolution as more
constraints are employed. A method to solve the
macromolecular phase problem ab initio would exist
when re®nement and extension could be initiated from
randomly generated phases. The goal of this work is to
®nd new characteristic features of the electron density,
and to combine them with existing constraints to create
more powerful methods for phase improvement. Speci-
®cally, we have examined the joint probability distribu-
tion of the electron density and its gradients.

The density histogram of a map is the probability
distribution of the electron-density values. The ideal
density histogram has provided a constraint on the
electron-density distribution which can be used to
improve phases by histogram matching, which seeks to
bring the distribution of electron-density values of a
given map to that of an ideal map (Harrison, 1988;
Lunin, 1988; Zhang & Main, 1990a).

The electron-density histogram speci®es not only the
permitted values of the electron density but also their

frequencies of occurrence (distribution). This distribu-
tion contains structural information about the under-
lying protein structure, such as the type of atoms and
their packing. Proteins consist of mostly C, N, O and a
few S atoms, and these atoms are certain characteristic
distances apart. The atoms are packed together in
protein structures and the packing density is relatively
independent of the structure conformation (Matthews,
1968, 1974). The distribution of atomic types and the
distances and angles between different atomic types are
all very similar among different structures. The differ-
ence in structural conformation mainly arises from the
dihedral angles of each residue. Since the density
histogram discards the positional information and
encodes only the distribution of the electron-density
values, it is therefore independent of structural confor-
mation. This means the density histogram is predictable
and can be used as a constraint for phase improvement.

The density histogram is degenerate, however, in
encoding the structural information. Drastically
different structures can have the same density distribu-
tion. Moreover, the stereochemical features in protein
structures are not all captured in the density histogram.
Since the density histogram only accounts for the value
at a given point and ignores its neighboring environ-
ment, any information about the neighborhood of a
point will be complementary to the density histogram.
One obvious measure of the environment of the
neighboring points is the gradient, since it re¯ects the
change of the density value within a local region of a
given point. It is based on this reasoning that we have
examined the joint distribution of density and gradient,
with the aim of ®nding a more discriminating constraint
that could be used for phase improvement.

2. Methods

There are two criteria that a constraint should satisfy in
order to be useful for phase improvement.

2.1.1. Predictability. The constraint should be struc-
ture independent. The less variation the constraint has
from structure to structure, the higher potential the
constraint will have for phasing.

2.1.2. Sensitivity to phase errors. The constraint should
vary with phase errors. The more sensitive to phase
errors the constraint is, the higher the phasing power of
this constraint.

The 2D histogram must be independent of structural
conformation if it is to be predictable. It is known that
the one-dimensional electron-density histogram is
dependent on resolution and the overall B factor
(Zhang & Main, 1990a). Therefore, we should ®rst
examine the dependence of the 2D histogram on reso-
lution and overall B factor. This is to identify and
remove factors that affect the 2D histogram. The search
for these factors does not have to be exhaustive,
provided that the 2D histogram is independent of
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structural conformation after they are removed. Those
factors have to be obtainable without the knowledge of
the structural conformation. We then examine the
dependence of the 2D histogram on structural confor-
mation. This is to establish whether the 2D histogram is
predictable. We ®nally examine the dependence of the
2D histogram on phase error to estimate its potential
phasing power.

In this section, we will ®rst illustrate how the density
gradients are calculated. We will then describe how the
joint distribution of density and gradient is obtained.
Finally, the methods used to measure the similarity of
the density and gradient histograms are described.

2.2. The calculation of density gradients

Given the electron density � at position (x, y, z) as a
Fourier transform of structure factors F(hkl),

��xyz� � �1=V�P
hkl

F�hkl� exp�ÿ2�i�hx� ky� lz��;
�1�

where (x, y, z) are the fractional coordinates along the
crystal axes (a, b, c) and (hkl) are the indices of the
structure factors, the gradients along each of the three
crystal axes are calculated as

@��xyz�
@x

� ÿ�2�i=V�P
hkl

hF�hkl� exp�ÿ2�i�hx� ky� lz��

� rx;

@��xyz�
@y

� ÿ�2�i=V�P
hkl

kF�hkl� exp�ÿ2�i�hx� ky� lz��

� ry;

@��xyz�
@z

� ÿ�2�i=V�P
hkl

lF�hkl� exp�ÿ2�i�hx� ky� lz��

� rz:

�2�
The modulus of the gradient, g, is then determined from

g2 �jr�j2 � r � r � �rxryrz�

�
a2 ab cos 
 ac cos�

ba cos 
 b2 bc cos �

ca cos� cb cos � c2

0B@
1CA rx

ry

rz

0B@
1CA ; �3�

where a, b, c and �, �, 
 are the unit-cell parameters.

2.3. The accumulation of two-dimensional density and
gradient histograms

The 2D histogram of density and gradient is the joint
distribution of the electron-density value and its
gradient in the protein region of the unit cell. It provides
a global description of the electron-density map and all
spatial information is discarded. Although the electron
density and its gradient can be calculated analytically

from structure factors by Fourier transforms, their joint
probability distribution cannot be obtained easily by
analytical methods. Therefore, a numerical approach is
adopted to derive the joint probability distribution of
electron density and gradients. The joint distribution of
density and gradient, P��; g�, is de®ned as

P��; g� � n�����; g��g�=N; �4�

where n�����; g��g� is the number of grid points in
the protein region of the map that have the density
���� and gradient g��g, and N is the total number
of grid points in the protein region of the map. The
density and gradient are divided into 200 bins, i.e.
�� � ��max ÿ �min�=200 and �g � �gmax ÿ gmin�=200.
Note that the projection of the 2D histogram, P��; g�,
along g or � gives the one-dimensional histograms, P(�)
or P(g) respectively, i.e. P��� � R P��; g� dg and
P�g� � R P��; g� d�.

The 2D histogram is obtained through the following
protocol.

(i) Calculate the structure-factor amplitudes and
phases from the atomic coordinates of a selected struc-
ture by inverse Fourier transforms.

(ii) Modify each structure factor, F, to F 0 by the
removal of the overall B factor, F 0 � F exp�Bs2�, where
s is the reciprocal-space vector. The overall temperature
(B) factor is calculated from the structure-factor
amplitudes and the unit-cell content of the crystal
using Wilson statistics (Wilson, 1949). The modi®ed
structure factor corresponds to that of a stationary
atom.

(iii) Calculate the electron-density map according to
one of the following recipes, based on the factors
examined: (a) using structure factors to different reso-
lutions to examine the effect of resolution on the 2D
histogram, (b) using structure factors modi®ed by
various overall B factors to examine the effect of atomic
thermal motion on the 2D histogram, (c) using structure
factors from different structures at the same resolution
and with the same overall B factor to examine the
conformation dependence of the 2D histogram or (d)
using structure factors with random phase errors added
to examine the effect of phase error on the 2D histo-
gram.

(iv) Calculate the density gradient along each crystal
axis using equation (2) and calculate the modulus of the
gradient using equation (3).

(v) Calculate the molecular envelope of the electron-
density map by the reciprocal-space convolution method
(Leslie, 1987; Wang, 1985).

(vi) Accumulate the occurrences of density and
gradient values in the protein region of the map inside
the molecular envelope. Calculate the joint distribution
by dividing the number of the occurrences by the total
number of grid points in the protein region.
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2.4. The measurement of similarity between 2D histo-
grams

In order to examine the dependence of the 2D
histogram on resolution, overall B factor, structure
conformation and phase error, we used the correlation
coef®cient and residual to quantify the similarity and
difference between a pair of 2D histograms.

2.4.1. Correlation coef®cient. The similarity between
any two 2D histograms is measured by the correlation
coef®cient, which is de®ned as

Ckl �
�Pn

j�1

Pm
i�1

�Pk��i; gj� ÿ Pk��i; gj��

� �Pl��i; gj� ÿ Pl��i; gj��
�

�
��Pn

j�1

Pm
i�1

�Pk��i; gj� ÿ Pk��i; gj��2

�Pn
j�1

Pm
i�1

�Pl��i; gj� ÿ Pl��i; gj��2
	1=2

�
:

�5�

where Pk��i; gj� and Pl��i; gj� represent the 2D histo-
grams k and l at a given point ��i; gj�. Pk��i; gj� and
Pl��i; gj� represent the average values in the 2D histo-
grams.

2.4.2. Residual. The difference between any two 2D
histograms is measured by the residual which is de®ned
as

Rkl �

Pn
j�1

Pm
i�1

�jPk��i; gj� ÿ Pl��i; gj�j�Pn
j�1

Pm
i�1

�jPk��i; gj�j � jPl��i; gj�j
� ; �6�

where Pk��i; gj� and Pl��i; gj� represent the 2D histo-
grams k and l at a given point ��i; gj�. jPk��i; gj�j and
jPl��i; gj�j represent the modulus of Pk��i; gj� and
Pl��i; gj�, respectively.

3. Results

The 2D histograms from a representative selection of
protein structures were systematically examined to
reveal the dependence of 2D histograms on resolution,
overall temperature (B) factor, structural conformation
and phase error.

3.1. The resolution dependence

Resolution re¯ects the amount of overlap between
neighboring atoms. The overlap of electron density
between atoms will affect both the density and gradient
distribution and, therefore, the 2D histogram. To

Table 1. Correlation coef®cients and residuals between 2D histograms of ®broblast growth factor at resolutions
between 1.6 and 4.0 AÊ

Each number in the tables represents the correlation between 2D histograms of two resolutions shown in the ®rst row and the ®rst column. Only
the correlation coef®cients in upper half of the diagonal are shown since the table is symmetric.

(a) Correlation coef®cients. Mean = 0.735, variance = 0.179.

Resolution (AÊ ) 4.00 3.42 3.00 2.67 2.40 2.18 2.00 1.85 1.71 1.60
4.00 1.000 0.826 0.629 0.530 0.422 0.390 0.380 0.374 0.371 0.320
3.42 Ð 1.000 0.873 0.767 0.655 0.607 0.598 0.596 0.593 0.543
3.00 Ð Ð 1.000 0.897 0.808 0.748 0.736 0.729 0.724 0.689
2.67 Ð Ð Ð 1.000 0.876 0.826 0.810 0.797 0.792 0.762
2.40 Ð Ð Ð Ð 1.000 0.888 0.880 0.868 0.862 0.840
2.18 Ð Ð Ð Ð Ð 1.000 0.903 0.901 0.896 0.882
2.00 Ð Ð Ð Ð Ð Ð 1.000 0.914 0.911 0.899
1.85 Ð Ð Ð Ð Ð Ð Ð 1.000 0.920 0.913
1.71 Ð Ð Ð Ð Ð Ð Ð Ð 1.000 0.917
1.60 Ð Ð Ð Ð Ð Ð Ð Ð Ð 1.000

(b) Residual. Mean = 0.257, variance = 0.118.

Resolution (AÊ ) 4.00 3.42 3.00 2.67 2.40 2.18 2.00 1.85 1.71 1.60
4.00 0.000 0.244 0.373 0.433 0.468 0.474 0.473 0.470 0.471 0.484
3.42 Ð 0.000 0.195 0.288 0.342 0.359 0.361 0.359 0.360 0.374
3.00 Ð Ð 0.000 0.156 0.217 0.249 0.259 0.266 0.271 0.283
2.67 Ð Ð Ð 0.000 0.142 0.176 0.194 0.210 0.219 0.228
2.40 Ð Ð Ð Ð 0.000 0.136 0.150 0.169 0.178 0.185
2.18 Ð Ð Ð Ð Ð 0.000 0.132 0.141 0.150 0.155
2.00 Ð Ð Ð Ð Ð Ð 0.000 0.129 0.134 0.139
1.85 Ð Ð Ð Ð Ð Ð Ð 0.000 0.126 0.128
1.71 Ð Ð Ð Ð Ð Ð Ð Ð 0.000 0.126
1.60 Ð Ð Ð Ð Ð Ð Ð Ð Ð 0.000
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determine the extent of the dependence of the 2D
histograms on the resolution, we compared the 2D
histograms of single structures at ten different resolu-
tions ranging from 1.6 to 4.0 AÊ . This resolution range
was selected based upon the typical resolutions of the
experimentally derived multiple isomorphous replace-
ment (MIR) phases that require further re®nement or
extension. The sampling of resolution is in equal steps of
reciprocal-space vector length (the inverse of resolu-

tion). One example, using ®broblast growth factor
(FGF), is presented here. The 2D histograms of FGF at
three selected resolutions, 1.6, 2.2 and 4.0 AÊ , are shown
in Fig. 1(a). In order to facilitate the visual inspection of
the variation of the 2D histogram, it was projected along
the gradient or density to produce the one-dimensional
density or gradient histograms, which are shown in
Figs. 1(b) and 1(c), respectively. The resolution depen-
dence of the 2D histograms was quanti®ed by calcu-

Fig. 1. (a) 2D histograms of ®broblast growth factor at 1.6, 2.18 and 4.0 AÊ resolution. The axes marked by �, g and P(�, g) represent the electron
density, modulus of the gradient and the joint probability distribution of electron density and gradient, respectively. The unit of the electron
density is e AÊ ÿ3 and the unit of the gradient is e AÊ ÿ4. The P(�, g) was normalized such that the total area under the surface equals one. All the
2D histograms are plotted on the same scale for comparison. The P(�, g) is represented as a mesh surface. A contour of P(�, g) is also shown in
the ®gure as dashed lines. The 2D histogram is sensitive to resolution changes. (b) One-dimensional density histogram of ®broblast growth
factor at resolutions from 1.6 to 4.0 AÊ . The axes � and P(�) represent the electron density and its probability respectively. Only three of the ten
histograms are labeled for clarity. The rest can be identi®ed by following the trend of the changes with resolution. The map at high resolution
has not only more high densities but also more low densities. (c) One-dimensional gradient histogram of ®broblast growth factor at resolutions
from 1.6 to 4.0 AÊ . The axes g and P(g) represent the electron-density gradient and its probability, respectively. Only three of the ten histograms
are labeled for clarity. Following the trend of the changes with resolution can identify the rest. The map at high resolution has more steep
gradients.
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Fig. 2. (a) 2D histograms of ®broblast growth factor at 1.6 AÊ with B factors ranging from 0 to 80 AÊ 2. The 2D histograms from these maps with
various B factors are drawn on the same scale for comparison. The 2D histogram is clearly dependent on the B factor. There are more
intermediate densities with low gradients as the B factor increases. (b) One-dimensional density histogram of ®broblast growth factor at 1.6 AÊ

with B factors at 0, 1, 10, 20, 40, 60 and 80 AÊ 2. Only three of the seven density histograms are labeled for clarity. The effect of B factor on density
histograms is similar to that of resolution. The maps with large B factors have fewer high densities and also fewer low densities. (c) One-
dimensional gradient histogram of ®broblast growth factor at 1.6 AÊ with B factors at 0, 1, 10, 20, 40, 60 and 80 AÊ 2. The effect of B factor on
gradient histograms is also similar to that of resolution. There are fewer and fewer high gradients and more and more low gradients as the B
factor increases.
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lating the correlation coef®cient (Table 1a) and residual
(Table 1b) between 2D histograms of various resolutions
using equations (5) and (6), respectively.

The resolution dependence of the 2D histogram can
be clearly seen from Fig. 1(a). At low resolution, most of
the grid points have low density and low gradient and
give rise to the high peak in the ®gure. As the resolution
increases, the 2D histogram becomes ¯atter and there
are more grid points in the map that have high-density
and high-gradient values. A higher resolution means less
overlap of atoms, which gives rise to higher contrast and
more variation in the map and, therefore, more grid
points with high density and also high gradient. The
resolution dependence and the behavior of the 2D
histogram are more obvious when examining the two
one-dimensional histograms, where the 2D histogram
has been projected along either the gradient or density
(Figs. 1b and 1c). Both the one-dimensional density and
gradient histograms showed large variation with reso-
lution. The density histogram at 4.0 AÊ is close to a
Gaussian distribution with only slight skewing at the
high-density side. The Gaussian component of the
density histogram is attributed to the random overlap of
atoms in the map, whereas the skewing is due to the non-
overlapping part of the map (Main, 1990). As resolution
increases, the density histogram (Fig. 1b) becomes more
skewed, re¯ecting the fact that more features in the
atoms are resolved and higher peaks in the map are
observed. This gives rise to the long tail at the high-
density side of the density histogram. The gradient
histogram (Fig. 1c) at low resolution is also close to a
symmetrical distribution. It becomes more skewed with
more grid points having high-gradient values as resolu-
tion increases, re¯ecting the fact that more variations are
observed in the map at higher resolution. Correlation
coef®cient and residual, as shown in Tables 1(a) and
1(b), respectively, can quantify the changes of the 2D

histogram with resolution. The average correlation
coef®cient and residual are 0.735 and 0.257, respectively,
for all the resolution steps. The above ®gures and tables
have demonstrated that resolution is a parameter which
must be considered when predicting the 2D histograms.
In order to eliminate the resolution dependence of the
2D histograms, all the subsequent investigations of the
2D histogram were at a speci®c resolution while varying
other parameters, such as overall B factor, structure
conformation and phase error.

3.2. The overall temperature-factor dependence

The temperature factor re¯ects the thermal motion of
the atoms in the crystal and, therefore, represents the
distribution of electrons around the equilibrium position
of the atom. The atomic thermal motion will affect the
2D histogram because it changes the distribution of
electrons. Here, an example of FGF at different values of
overall B factor is presented. Fig. 2(a) shows six 2D
histograms of FGF at 1.6 AÊ with overall B factors at 0,
10, 20, 40, 60 and 80 AÊ 2. Figs. 2(b) and 2(c) show the one-
dimensional density and gradient histograms for the
same conditions. The correlation coef®cients and resi-
duals for these 2D histograms of FGF with different
overall B factors are listed in Tables 2(a) and 2(b),
respectively. From the presented results, it is obvious
that the 2D histogram at a given resolution is dependent
on the overall B factor. The dependence on the overall B
factor is similar to that of the resolution. As the overall
B factor increases, the peak in the 2D histogram (Fig. 2a)
increases, which is correlated with the decrease of the
other areas in the 2D histogram. The increase of the
overall B factor diffuses the electrons around the atom
and decreases the peak height at the atomic position in
the electron-density map. This decreases the probability
of high-density values in the map and causes the

Table 2. Correlation and residual of 2D histograms of FGF at 1.6 AÊ with B factors ranging from 0 to 80 AÊ 2

(a) Correlation. Mean = 0.378, variance = 0.288.

Temperature factor (AÊ 2) 0 1 10 20 40 60 80
0 1.000 0.920 0.568 0.205 0.101 0.043 ÿ0.002
1 Ð 1.000 0.632 0.246 0.129 0.065 0.013
10 Ð Ð 1.000 0.695 0.413 0.264 0.139
20 Ð Ð Ð 1.000 0.713 0.459 0.248
40 Ð Ð Ð Ð 1.000 0.788 0.484
60 Ð Ð Ð Ð Ð 1.000 0.813
80 Ð Ð Ð Ð Ð Ð 1.000

(b) Residual. Mean = 0.447, variance = 0.148.

Temperature factor (AÊ 2) 0 1 10 20 40 60 80
0 0.000 0.125 0.273 0.394 0.541 0.607 0.636
1 Ð 0.000 0.255 0.384 0.535 0.603 0.633
10 Ð Ð 0.000 0.255 0.457 0.558 0.608
20 Ð Ð Ð 0.000 0.348 0.499 0.577
40 Ð Ð Ð Ð 0.000 0.324 0.484
60 Ð Ð Ð Ð Ð 0.000 0.286
80 Ð Ð Ð Ð Ð Ð 0.000
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Fig. 3. (a) 2D histograms of six different structures at 1.6 AÊ resolution with overall B = 0. The 2D histograms were obtained from the protein
region of the maps calculated from the atomic coordinates. The 2D histograms of these six structures of distinctive folds are very similar,
revealing the conformation independence of the 2D histogram. Those spikes on the surfaces are due to statistical ¯uctuations as a result of
limited sampling. (b) One-dimensional density histograms of 16 different structures at 1.6 AÊ with B = 0. These were obtained from the 2D
histograms by integrating over the gradient. The density histograms from these 16 structures are very similar despite that fact the all these
structures are from distinctive fold families. The similarity is more pronounced at the high-density side. It is these high densities that contain
most of the structural information. (c) One-dimensional gradient histograms of 16 different structures at 1.6 AÊ with B = 0. These were obtained
from the 2D histograms by integrating over the density. The gradient histograms from these 16 structures of different fold families are very
similar.
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increase in the probability of the medium-density values
(Fig. 2b). The increase of the atomic thermal motion also
¯attens the peak in the map and causes the decrease in
the high-gradient values and the accumulation of the
low-gradient values in the histogram (Fig. 2c). It appears
that the effect of the increase of overall B factor on the
2D histogram is equivalent to that of the decrease in
resolution. Hence, before we examine the structure
dependence of the 2D histogram, it should be made
independent of the overall B factor. This can be
achieved by the removal of the overall B factor from the
structure factors and thereby the map, which corre-
sponds to diffraction from stationary atoms. This stan-
dardization of the 2D histogram will not affect the
potential implementation of the 2D histogram-matching
method, since the overall B factor for an unknown
structure can be estimated from the observed structure-
factor amplitudes using Wilson statistics (Wilson, 1949).

3.3. The structure dependence

To examine the dependence of the 2D histogram on
structural conformation, we compared 16 protein
structures from the Protein Data Bank (PDB). In order
to represent different structure types, we selected one
structure from each folding class according to the
structure classi®cation of Orengo et al. (1993). In this
way, the representation space is maximized and the
chances of local structure dependence of the 2D histo-
grams are minimized. The 16 structures, their PDB codes
and their fold families are listed in Table 3.

For each set of comparisons, the histograms were
determined at the same resolution and the overall B
factor was removed, giving a map corresponding to
stationary atoms. The 2D histograms of these structures
were examined at resolutions ranging from 1.6 to 4.0 AÊ .
The 2D histograms of six representative structures at
1.6 AÊ are shown in Fig. 3(a). The one-dimensional
density and gradient histograms of all 16 structures at
1.6 AÊ are shown in Figs. 3(b) and 3(c), respectively. The
correlation coef®cients between each pair of 2D histo-
grams of the 16 structures at three representative reso-
lutions, high (1.6 AÊ ), medium (2.2 AÊ ) and low (3.5 AÊ ),
are shown in Tables 4(a), 4(c) and 4(e), respectively. The
residuals between the 2D histograms of different struc-

tures at the same resolutions are shown in Tables 4(b),
4(d) and 4(f), respectively.

The 2D histograms seem to be very similar among the
six structures shown in Fig. 3(a). The variation in the 2D
histograms between structures of different conformation
is far less than between maps of different resolution and
also between maps of different B factors. Most impor-
tantly, as we will show later in x3.4, the conformation
dependence of the 2D histogram is far less than the
phase-error dependence. The one-dimensional projec-
tions show more clearly the conservation of both the
density and gradient histograms among various struc-
tures. The overall average and variance of the correla-
tion coef®cients are 0.904 and 0.037 for the three
resolutions examined. The overall average and variance
of the residual are 0.132 and 0.029. Whether the amount
of variation between the 2D histograms of different
structures is signi®cant will be examined in the next
section by comparison with the effect of the phase error
on the 2D histograms.

3.4. The phase dependence

In order for a constraint to be useful for phasing, it
must be sensitive to phase errors. We will address the
issue of the phase-error sensitivity of the 2D histogram
in the following section. To study the sensitivity of the
2D histogram to phase error, we have again selected
FGF as a test case. A map was ®rst calculated at 1.6 AÊ

resolution using the correct phases from the atomic
coordinates. The overall B factor was also removed from
the structure-factor amplitudes. Various random phase
errors, from 0 to 90� in 10� increments, were then
applied to the correct phases. Density and gradient maps
were calculated for the structure at each phase error and
the 2D histograms were accumulated. The resulting two-
dimensional density and gradient histograms with 0, 40
and 90� phase errors are shown in Fig. 4(a). The one-
dimensional density and one-dimensional gradient
histograms with phase errors ranging from 0 to 90� in 10�

increments are shown in Figs. 4(b) and 4(c), respectively.
The correlation coef®cients and residuals between the
2D histograms are listed in Tables 5(a) and 5(b).

The results show that the 2D histogram is indeed
sensitive to the phase errors. The average correlation
coef®cient for a 10� phase error is 0.714. This means that

Table 3. The 16 representative structures used as a test set

Structure name, PDB code and folding class according to Orengo et al. (1993) are listed.

1. Fibroblast growth factor (4 FGF) � trefoil 9. Papain (9PAP) Multidomain
2. Ribonuclease T1 (9RNT) �� � sandwich 10. Ovomucoid (2OVO) �� � S±S rich
3. Lysozyme (1LZ3) �� � mainly � 11. DNA binding protein (2WRP) � orthogonal
4. Cytochrome B562 (256Ba) � up/down 12. Cytochrome b5 (3B5C) �� � metal rich
5. Erabutoxin (3EBX) � disul®de rich 13. Endothial aspartic protease (2ER7) � sandwich
6. Cytochrome c551 (451C) � metal rich 14. Beta trypsin (4PTP) � Greek key
7. Ca2+ binding parvalbumin (4CPV) � EF-hand 15. Carboxypeptidase A (5CPA) �=� doubly wound
8. Erythrocruorin (1ECD) � globin 16. Arabinose-binding protein (8ABP) �=� multidomain
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the variation of 2D histograms among structures of
drastically different conformation (with a mean corre-
lation of 0.904) is signi®cantly smaller than that caused
by a 10� phase error (with an average correlation of
0.714). This establishes the sensitivity of the 2D histo-
gram to phase error. The average correlation coef®-
cients and residuals corresponding to different phase
errors are shown in Figs. 5(a) and 5(b), respectively. The
average correlation coef®cient for a given phase error

was derived from summation of the off-diagonal
elements in Table 5(a) which corresponds to pairs of 2D
histograms with the same phase differences. The average
residuals were calculated in the same way from
Table 5(b). These are marked by diamonds in Figs. 5(a)
and 5(b). A curve of a power series was ®tted to those
data points and is shown in Figs. 5(a) and 5(b).

The phase error corresponding to the average corre-
lation coef®cient of 0.904 from the 16 structures at three

Fig. 4. (a) 2D histogram of ®broblast growth factor at 1.6 AÊ with 0, 40 and 90� phase errors. These 2D histograms differ signi®cantly showing that
the 2D histogram is very sensitive to phase error. (b) One-dimensional density histogram of ®broblast growth factor at 1.6 AÊ with phase errors
from 0 to 90� in a 10� step. There is a large variation between these ten density histograms showing that the density histogram is dependent on
phase error. (c) One-dimensional gradient histogram of ®broblast growth factor at 1.6 AÊ with phase errors from 0 to 90� in 10� steps. All ten
gradient histograms differ signi®cantly. This shows that the phase error affects not only the density distribution but also the gradient
distribution.
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different resolutions is marked by the vertical dashed
line in Fig. 5(a). This extrapolation gives a phase error of
about 2�. The phase error corresponding to the average
residual of 0.132 from the 16 structures at three different
resolutions is marked by the vertical dashed line in

Fig. 5(b). This shows a phase error of about 5�. The
difference between the two extrapolated phase-error
values re¯ects the sensitivity difference between the
correlation coef®cient and the residual over this region
of phase error. The combined estimate of the phase

Table 4. Correlation and residual of 2D histograms between different structures at 1.6, 2.2 and 3.5 AÊ

(a) Correlation at 1.6 AÊ . Mean = 0.883, variance = 0.042.

File 4fgf 9rnt 1lz3 256ba 3ebx 451c 4cpv 1ecd 9pap 2ovo 2wrp 3b5c 2er7 4ptp 5cpa 8abp
4fgf 1.000 0.860 0.904 0.906 0.816 0.863 0.903 0.921 0.924 0.876 0.911 0.876 0.927 0.923 0.926 0.929
9rnt Ð 1.000 0.858 0.882 0.801 0.827 0.828 0.898 0.862 0.813 0.831 0.843 0.896 0.877 0.884 0.848
1lz3 Ð Ð 1.000 0.906 0.819 0.859 0.883 0.924 0.905 0.858 0.886 0.873 0.928 0.914 0.920 0.901
256ba Ð Ð Ð 1.000 0.850 0.871 0.872 0.951 0.906 0.852 0.873 0.891 0.948 0.926 0.934 0.891
3ebx Ð Ð Ð Ð 1.000 0.788 0.779 0.864 0.815 0.764 0.781 0.808 0.862 0.836 0.846 0.800
451c Ð Ð Ð Ð Ð 1.000 0.840 0.888 0.868 0.820 0.847 0.838 0.893 0.874 0.882 0.857
4cpv Ð Ð Ð Ð Ð Ð 1.000 0.887 0.909 0.869 0.911 0.849 0.900 0.903 0.901 0.923
1ecd Ð Ð Ð Ð Ð Ð Ð 1.000 0.923 0.867 0.888 0.906 0.968 0.942 0.953 0.903
9pap Ð Ð Ð Ð Ð Ð Ð Ð 1.000 0.879 0.916 0.876 0.925 0.928 0.930 0.936
2ovo Ð Ð Ð Ð Ð Ð Ð Ð Ð 1.000 0.875 0.827 0.881 0.878 0.877 0.889
2wrp Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð 1.000 0.853 0.904 0.907 0.904 0.933
3b5c Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð 1.000 0.906 0.889 0.896 0.866
2er7 Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð 1.000 0.941 0.953 0.909
4ptp Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð 1.000 0.939 0.926
5cpa Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð 1.000 0.921
8abp Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð 1.000

(b) Residual at 1.6 AÊ . Mean = 0.145, variance = 0.027.

File 4fgf 9rnt 1lz3 256ba 3ebx 451c 4cpv 1ecd 9pap 2ovo 2wrp 3b5c 2er7 4ptp 5cpa 8abp
4fgf 0.000 0.157 0.133 0.126 0.181 0.159 0.146 0.116 0.119 0.162 0.141 0.150 0.113 0.120 0.115 0.115
9rnt Ð 0.000 0.159 0.143 0.188 0.177 0.182 0.133 0.154 0.190 0.181 0.167 0.139 0.147 0.142 0.160
1lz3 Ð Ð 0.000 0.128 0.180 0.162 0.157 0.115 0.131 0.170 0.153 0.152 0.116 0.126 0.120 0.131
256ba Ð Ð Ð 0.000 0.164 0.152 0.156 0.090 0.123 0.169 0.155 0.138 0.098 0.111 0.103 0.129
3ebx Ð Ð Ð Ð 0.000 0.196 0.205 0.156 0.180 0.210 0.205 0.187 0.162 0.171 0.166 0.185
451c Ð Ð Ð Ð Ð 0.000 0.180 0.143 0.154 0.190 0.178 0.173 0.144 0.153 0.147 0.159
4cpv Ð Ð Ð Ð Ð Ð 0.000 0.146 0.145 0.170 0.142 0.171 0.139 0.143 0.144 0.133
1ecd Ð Ð Ð Ð Ð Ð Ð 0.000 0.111 0.160 0.146 0.129 0.080 0.098 0.088 0.118
9pap Ð Ð Ð Ð Ð Ð Ð Ð 0.000 0.161 0.140 0.149 0.112 0.115 0.109 0.110
2ovo Ð Ð Ð Ð Ð Ð Ð Ð Ð 0.000 0.167 0.183 0.155 0.159 0.158 0.154
2wrp Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð 0.000 0.171 0.136 0.141 0.141 0.125
3b5c Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð 0.000 0.134 0.140 0.136 0.152
2er7 Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð 0.000 0.104 0.093 0.114
4ptp Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð 0.000 0.103 0.114
5cpa Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð 0.000 0.113
8abp Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð 0.000

(c) Correlation at 2.2 AÊ . Mean = 0.892, variance = 0.041.

File 4fgf 9rnt 1lz3 256ba 3ebx 451c 4cpv 1ecd 9pap 2ovo 2wrp 3b5c 2er7 4ptp 5cpa 8abp
4fgf 1.000 0.831 0.887 0.899 0.795 0.847 0.863 0.927 0.908 0.838 0.850 0.852 0.916 0.908 0.914 0.908
9rnt Ð 1.000 0.823 0.855 0.764 0.789 0.783 0.866 0.835 0.762 0.738 0.809 0.859 0.844 0.852 0.826
1lz3 Ð Ð 1.000 0.898 0.789 0.838 0.861 0.923 0.897 0.831 0.837 0.851 0.913 0.902 0.908 0.900
256ba Ð Ð Ð 1.000 0.810 0.850 0.869 0.944 0.906 0.839 0.827 0.876 0.931 0.919 0.929 0.908
3ebx Ð Ð Ð Ð 1.000 0.754 0.739 0.823 0.796 0.719 0.695 0.770 0.821 0.801 0.804 0.784
451c Ð Ð Ð Ð Ð 1.000 0.815 0.875 0.855 0.789 0.791 0.804 0.874 0.854 0.859 0.853
4cpv Ð Ð Ð Ð Ð Ð 1.000 0.901 0.886 0.858 0.889 0.820 0.901 0.879 0.895 0.908
1ecd Ð Ð Ð Ð Ð Ð Ð 1.000 0.937 0.868 0.874 0.891 0.954 0.945 0.953 0.939
9pap Ð Ð Ð Ð Ð Ð Ð Ð 1.000 0.859 0.879 0.860 0.924 0.919 0.925 0.928
2ovo Ð Ð Ð Ð Ð Ð Ð Ð Ð 1.000 0.857 0.791 0.872 0.848 0.863 0.878
2wrp Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð 1.000 0.784 0.857 0.862 0.875 0.910
3b5c Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð 1.000 0.883 0.869 0.877 0.860
2er7 Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð 1.000 0.924 0.933 0.922
4ptp Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð 1.000 0.933 0.923
5cpa Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð 1.000 0.934
8abp Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð 1.000
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error from both the correlation coef®cient and the
residual is about 4�. This establishes the minimum phase
error that the ideal 2D histogram, derived from
consensus 2D histograms of different structures, could
specify when used as a target for density modi®cation or

phase discrimination. Note that structures are solved
using MIR phases with phase errors as high as 70�.
Structures can be solved routinely using MIR phases
with errors below 50�. Here, only random errors from
the MIR phases are compared, since the 2D histogram is

(d) Residual at 2.2 AÊ . Mean = 0.136, variance = 0.030.

File 4fgf 9rnt 1lz3 256ba 3ebx 451c 4cpv 1ecd 9pap 2ovo 2wrp 3b5c 2er7 4ptp 5cpa 8abp
4fgf 0.000 0.160 0.136 0.126 0.179 0.159 0.164 0.109 0.120 0.178 0.169 0.155 0.122 0.123 0.118 0.120
9rnt Ð 0.000 0.165 0.147 0.192 0.184 0.193 0.143 0.155 0.204 0.210 0.171 0.153 0.154 0.148 0.157
1lz3 Ð Ð 0.000 0.129 0.183 0.166 0.165 0.114 0.130 0.180 0.174 0.157 0.126 0.128 0.123 0.127
256ba Ð Ð Ð 0.000 0.173 0.157 0.155 0.094 0.119 0.173 0.172 0.141 0.112 0.112 0.104 0.115
3ebx Ð Ð Ð Ð 0.000 0.200 0.214 0.168 0.177 0.223 0.227 0.193 0.174 0.177 0.174 0.180
451c Ð Ð Ð Ð Ð 0.000 0.186 0.145 0.154 0.199 0.197 0.180 0.149 0.157 0.153 0.154
4cpv Ð Ð Ð Ð Ð Ð 0.000 0.140 0.153 0.173 0.160 0.180 0.134 0.155 0.147 0.141
1ecd Ð Ð Ð Ð Ð Ð Ð 0.000 0.100 0.160 0.151 0.133 0.095 0.095 0.087 0.095
9pap Ð Ð Ð Ð Ð Ð Ð Ð 0.000 0.169 0.158 0.149 0.113 0.114 0.110 0.107
2ovo Ð Ð Ð Ð Ð Ð Ð Ð Ð 0.000 0.179 0.195 0.154 0.172 0.166 0.158
2wrp Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð 0.000 0.195 0.143 0.146 0.140 0.147
2er7 Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð 0.000 0.154 0.163 0.158 0.144
3b5c Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð 0.000 0.118 0.110 0.110
4ptp Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð 0.000 0.104 0.111
5cpa Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð 0.000 0.103
8abp Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð 0.000

(e) Correlation at 3.5 AÊ . Mean = 0.938, variance = 0.029.

File 4fgf 9rnt 1lz3 256ba 3ebx 451c 4cpv 1ecd 9pap 2ovo 2wrp 3b5c 2er7 4ptp 5cpa 8abp
4fgf 1.000 0.935 0.964 0.962 0.917 0.946 0.920 0.973 0.967 0.923 0.914 0.947 0.953 0.970 0.958 0.972
9rnt Ð 1.000 0.935 0.948 0.914 0.937 0.909 0.947 0.957 0.911 0.868 0.940 0.941 0.938 0.930 0.953
1lz3 Ð Ð 1.000 0.966 0.912 0.941 0.908 0.973 0.963 0.914 0.887 0.947 0.946 0.966 0.962 0.967
245ba Ð Ð Ð 1.000 0.914 0.950 0.919 0.973 0.972 0.927 0.869 0.960 0.959 0.967 0.974 0.972
3ebx Ð Ð Ð Ð 1.000 0.911 0.862 0.923 0.928 0.866 0.849 0.905 0.906 0.908 0.889 0.923
451c Ð Ð Ð Ð Ð 1.000 0.918 0.951 0.958 0.918 0.886 0.942 0.949 0.946 0.939 0.957
4cpv Ð Ð Ð Ð Ð Ð 1.000 0.925 0.936 0.950 0.921 0.925 0.962 0.933 0.928 0.945
1ecd Ð Ð Ð Ð Ð Ð Ð 1.000 0.975 0.925 0.911 0.957 0.955 0.980 0.970 0.981
9pap Ð Ð Ð Ð Ð Ð Ð Ð 1.000 0.937 0.904 0.961 0.969 0.968 0.961 0.978
2ovo Ð Ð Ð Ð Ð Ð Ð Ð Ð 1.000 0.897 0.926 0.961 0.932 0.936 0.943
2wrp Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð 1.000 0.881 0.906 0.922 0.883 0.923
3b5c Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð 1.000 0.953 0.953 0.953 0.963
2er7 Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð 1.000 0.955 0.958 0.968
4ptp Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð 1.000 0.970 0.978
5cpa Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð 1.000 0.970
8abp Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð 1.000

(f) Residual at 3.5 AÊ . Mean = 0.114, variance = 0.029.

File 4fgf 9rnt 1lz3 256ba 3ebx 451c 4cpv 1ecd 9pap 2ovo 2wrp 3b5c 2er7 4ptp 5cpa 8abp
4fgf 0.000 0.110 0.087 0.086 0.129 0.106 0.160 0.076 0.084 0.146 0.124 0.106 0.114 0.080 0.097 0.079
9rnt Ð 0.000 0.110 0.099 0.137 0.114 0.156 0.099 0.093 0.148 0.146 0.110 0.121 0.106 0.114 0.095
1lz3 Ð Ð 0.000 0.084 0.135 0.109 0.164 0.076 0.087 0.149 0.137 0.106 0.118 0.084 0.093 0.083
256ba Ð Ð Ð 0.000 0.136 0.100 0.149 0.070 0.074 0.134 0.136 0.091 0.104 0.077 0.075 0.071
3ebx Ð Ð Ð Ð 0.000 0.140 0.207 0.132 0.129 0.193 0.167 0.148 0.161 0.141 0.160 0.133
451c Ð Ð Ð Ð Ð 0.000 0.153 0.100 0.094 0.143 0.141 0.111 0.114 0.104 0.112 0.095
4cpv Ð Ð Ð Ð Ð Ð 0.000 0.151 0.137 0.105 0.145 0.140 0.103 0.140 0.130 0.129
1ecd Ð Ð Ð Ð Ð Ð Ð 0.000 0.070 0.139 0.123 0.094 0.107 0.064 0.078 0.063
9pap Ð Ð Ð Ð Ð Ð Ð Ð 0.000 0.127 0.124 0.090 0.092 0.078 0.087 0.067
2ovo Ð Ð Ð Ð Ð Ð Ð Ð Ð 0.000 0.151 0.131 0.098 0.131 0.118 0.121
2wrp Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð 0.000 0.143 0.125 0.120 0.140 0.116
3b5c Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð 0.000 0.107 0.096 0.095 0.088
2er7 Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð 0.000 0.106 0.096 0.092
4ptp Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð 0.000 0.077 0.068
5cpa Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð 0.000 0.077
8abp Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð 0.000

Table 4 (cont.)
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a statistically derived constraint. When there are
systematic errors in the MIR phases, the distortion to
the map is more severe and maps can only be inter-
preted with much smaller phase errors. Because the
variation between the 2D histograms of different
structures corresponds to that caused by a very small

phase error, we conclude that the 2D histogram is
independent of structure, with respect to a tolerable
amount of phase error. This established the predict-
ability of the 2D histogram for unknown structures. The
ideal 2D histogram for an unknown structure can be
taken as the consensus 2D histogram of a representative
set of well re®ned structures as listed in Table 3. The
sensitivity of the 2D histogram to phase error suggests
that the 2D histogram can be used as a constraint for
phase re®nement and extension. It is also anticipated
that the 2D histograms could be used as a ®gure of merit
to assess the accuracy of phase sets in an ab initio
phasing approach.

4. Discussion

We have demonstrated in x3 that the 2D histogram is
independent of structure and dependent on resolution,
overall B factor and phase error. We can standardize 2D
histograms by removing the overall B factor from the
electron-density map, since the overall B factor can be
estimated for unknown structures from Wilson statistics
(Wilson, 1949). The resolution dependence of the 2D
histogram can be eliminated by the use of resolution-
speci®c 2D histograms. By making the constraints
resolution speci®c, the non-atomic resolution diffraction
of protein crystals can be more effectively dealt with. It
also offers an advantage over other resolution-inde-
pendent constraints on phasing extension, since the
constraint is speci®ed for each resolution.

By standardizing the 2D histogram with the removal
of the overall B factor and making it resolution speci®c,
a 2D histogram is only dependent on the phase error.
The ideal 2D histogram for an unknown structure at a
given resolution can be predicted by using the consensus
2D histogram derived from known structures. We can
systematically adjust the electron-density values for a
given map so that the modi®ed map will have the same
2D histogram as the ideal one. This 2D histogram-
matching procedure will greatly improve the quality of
the map and, therefore, the phases.

The independence of molecular conformation and
sensitivity to phase error has also been examined (Xiang
& Carter, 1996) on one-dimensional density, gradient
and Laplacian histograms and 2D histograms of the
pairwise combinations of these three components. The
one-dimensional histograms of density, gradient and
Laplacian derived from model structures of an �-helix,
�-strand and loop were compared and it was found that
these one-dimensional histograms were independent of
molecular conformations. The sensitivity of the one-
dimensional and 2D histograms to phase errors was also
investigated and the gradient histogram was found to be
the most sensitive to phase error. Our study focused on
the 2D histogram of density and gradient and extended
the scope of examination by including protein structures
from 16 different fold families instead of model struc-

Fig. 5. (a) Correlation coef®cients of 2D histograms as a function of
phase errors. The correlation coef®cients are derived from Table
5(a) by averaging over all the pairs of 2D histograms with the same
phase difference. The correlation coef®cients are measured between
0� and 90� with a 10� interval and are represented as diamonds in
the ®gure. A curve of a power series is ®tted with the measured
correlation coef®cients. The vertical line indicates the average
correlation coef®cients between different structures and the
corresponding phase error. (b) Residual of 2D histograms as a
function of phase errors. The residuals are derived from Table 5(b)
by averaging over all the pairs of 2D histograms with the same phase
difference. The residuals are measured between 0 and 90� with a 10�

interval and are represented as diamonds in the ®gure. A curve of a
power series is ®tted with the measured residuals. The vertical line
indicates the average residual between different structures and the
corresponding phase error.
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tures. Our studies based on a set of complete protein
structures have reached the same conclusion. Moreover,
by quantifying the correlation and residual between all
the 2D histograms examined, we have derived the
variation of 2D histograms among different structures
and established the corresponding phase error as the
upper limit for any density-modi®cation method that
uses the 2D histogram as the constraint.

The application of the local environment of the
electron density as a constraint for phase improvement
has been demonstrated by Refaat et al. (1996). They
proposed a method of density modi®cation based on
density histograms that takes into account the local
environment of electron density. The characteristics
investigated are the local minimum, maximum and
variance of the density. Tests of this method on 2Zn
insulin and RNAp1 structures have shown it to reduce
the phase errors by a further 10� compared with the
normal histogram-matching method.

Our investigation and the above studies strongly
suggest that the information about the local environ-
ment of electron density, such as the local minimum,
maximum and mean density, could be exploited for
phase improvement. The 2D histogram of the density
and gradient is another measure of the characteristic
features of the density and its local environment. The 2D
histogram substantially reduces the degeneracy of the
one-dimensional electron-density histogram, thereby
providing a more accurate target for phase improvement
and a more discriminating ®gure of merit for detecting
phase errors. A systematic approach of examining the
resolution, temperature-factor, conformation and phase

dependence of a given constraint has been adopted in
our study of 2D histograms. This approach can be
generalized to investigate the multi-dimensional prob-
ability distribution of electron density, such as the
Laplacian (Xiang & Carter, 1996) and also the higher
order derivatives of electron density. A consensus 2D
histogram can be derived from the 16 structures and can
be used as the standard for 2D histogram matching.
Methods for the matching of the 2D histograms of a
given map to that of the standard one are being devel-
oped and tested. The 2D histogram matching will be
used to improve the quality of the map and, therefore,
the accuracy of the phases. This density-modi®cation
technique will be used not only to re®ne but also to
extend the phases to higher resolution. Using the 2D
histogram as a constraint instead of the one-dimensional
histogram will provide more phasing power and, there-
fore, the 2D histogram-matching method could poten-
tially be more powerful in phasing re®nement and
extension.

As mentioned previously, the density histogram
discards all positional information. Although the histo-
gram is unique for any particular map, vastly different
maps can have identical histograms. We have attempted
to remedy this problem by providing further constraints,
such as the probability distribution of the gradient, in
addition to the electron-density distribution. It is fore-
seeable that these constraints might still not be capable
of giving a unique solution to the electron-density
equation. Other constraints of different characteristics
could further reduce the degeneracy of the constraint
space. Since the electron-density histogram was found to

Table 5. Correlation and residual of 2D histograms of ®broblast growth factor at 1.6 AÊ with phase errors from 0 to 90�

(a) Correlation. Mean = 0.497, variance = 0.215.

Phase error (�) 0 10 20 30 40 50 60 70 80 90
0 1.000 0.868 0.670 0.433 0.285 0.190 0.116 0.065 0.076 0.109
10 Ð 1.000 0.770 0.565 0.411 0.291 0.211 0.140 0.217 0.188
20 Ð Ð 1.000 0.732 0.601 0.469 0.435 0.363 0.379 0.334
30 Ð Ð Ð 1.000 0.709 0.621 0.582 0.595 0.545 0.583
40 Ð Ð Ð Ð 1.000 0.686 0.634 0.663 0.590 0.599
50 Ð Ð Ð Ð Ð 1.000 0.665 0.665 0.662 0.656
60 Ð Ð Ð Ð Ð Ð 1.000 0.680 0.683 0.682
70 Ð Ð Ð Ð Ð Ð Ð 1.000 0.655 0.649
80 Ð Ð Ð Ð Ð Ð Ð Ð 1.000 0.663
90 Ð Ð Ð Ð Ð Ð Ð Ð Ð 1.000

(b) Residual. Mean = 0.244, variance = 0.068.

Phase error (�) 0 10 20 30 40 50 60 70 80 90
0 0.000 0.144 0.207 0.269 0.306 0.329 0.348 0.360 0.357 0.351
10 Ð 0.000 0.173 0.233 0.273 0.303 0.321 0.337 0.321 0.327
20 Ð Ð 0.000 0.169 0.207 0.241 0.253 0.267 0.264 0.274
30 Ð Ð Ð 0.000 0.248 0.283 0.299 0.297 0.313 0.301
40 Ð Ð Ð Ð 0.000 0.169 0.181 0.177 0.192 0.189
50 Ð Ð Ð Ð Ð 0.000 0.168 0.169 0.169 0.169
60 Ð Ð Ð Ð Ð Ð 0.000 0.171 0.171 0.171
70 Ð Ð Ð Ð Ð Ð Ð 0.000 0.169 0.173
80 Ð Ð Ð Ð Ð Ð Ð Ð 0.000 0.168
90 Ð Ð Ð Ð Ð Ð Ð Ð Ð 0.000
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be synergistic with other constraints like solvent ¯atness,
equal molecules, atomic shape and map continuity
(Zhang, 1993; Zhang & Main, 1990b), the synergism
between the 2D histogram and the above constraints will
be investigated.

We thank Dr Peter Main and Dr David Baker for
discussion. This work was supported by funds from the
Fred Hutchinson Cancer Research Center and the
National Institutes of Health grant R29GM55663.
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